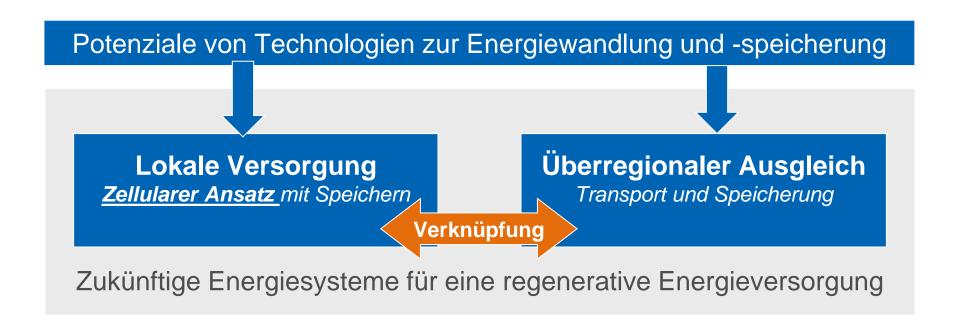
Der Zellulare Ansatz – Grundlage einer erfolgreichen, regionenübergreifenden Energiewende

Entwicklung der elektrischen Energieversorgung

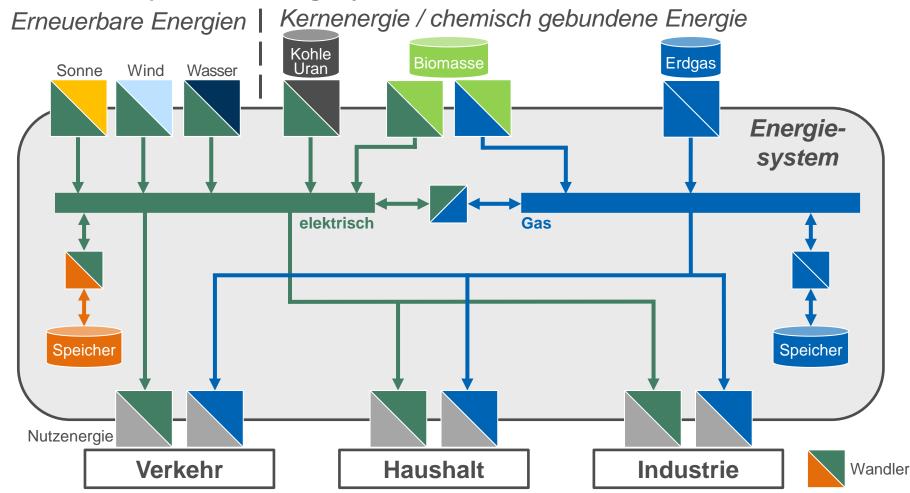
Zeitstrahl


Zentralisierung des Systems 2016 dezentrale Licht- & überregionale Zukunft der **Energiewende Stromnetze** Elektrizitätswerke **Energienetze?** Beginn mit Beleuchtung weitere Anwendungen Änderung der Erzeugung ? Smart Grid Zubau Onshore WEA, PVA ? HVDC meist Gleichspannung AC-Drehstromsystem kleine Kraftwerke in Städten Großkraftwerke Erste Offshore WFA ? Overlay-Netz Europäisches Verbundsystem "Kleinstaaterei" Netzentwicklungspläne ? SuperGrid Liberalisierung verschiedenste Betriebsmittel ? Desertec Normung

Fotos: vlnr. 1 bis 3: SLUB Dresden/Deutsche Fotothek, Franz Stoedtner / 4 bis 8 © Fotolia.com 4: Digitalpress 5: Franz Metelec 6: Yauhen Suslo 7: Andrew Orlemann 8: focus finder

Zielsetzung der Taskforce

Wie sieht eine moderne Energieversorgung aus, wenn man unter Beachtung der neuen Anforderungen, aber auch unter Verwendung richtungsweisender Technologien die Struktur völlig neu konzipieren könnte?


Inhalt

- Technologiesteckbriefe
 - Wandler und Speicher im Energiesystem
 - Charakterisierung
 - Beispiele
- Zellularer Ansatz
 - Idee
 - Übersicht Energiezellen
 - Vorgehensweise am Beispiel der Energiezelle (EZ) Haushalt
 - Ergebnisse
- Energetische Betrachtungen
 - Annahmen für Verbrauch: Endenergiebedarf nach Anwendungsbereichen
 - Annahmen für Erzeugung: Installierte Leistung, Volllaststunden und Ertragspotenziale
- Überregionaler Energieausgleich
 - Methodik
 - Annahmen
 - Ergebnisse: Energieausgleich und Übertragungskorridore
- Zusammenfassung

Technologiesteckbriefe

Wandler und Speicher im Energiesystem

Technologiesteckbriefe

Charakterisierung

Energie zuführende Wandler (Erzeugung)

- Führen dem System Energie zu
 - Bezugsenergie: Erneuerbare Energien (Wind, Sonne), fossile Energie (Kohle, Erdgas)
 - · Zielenergie: Elektrizität, Gas, Wärme
- ⇒ Beispiele: Windkraftanlagen, Photovoltaik-Anlagen, Großkraftwerke, BHKW

Energie konditionierende Wandler

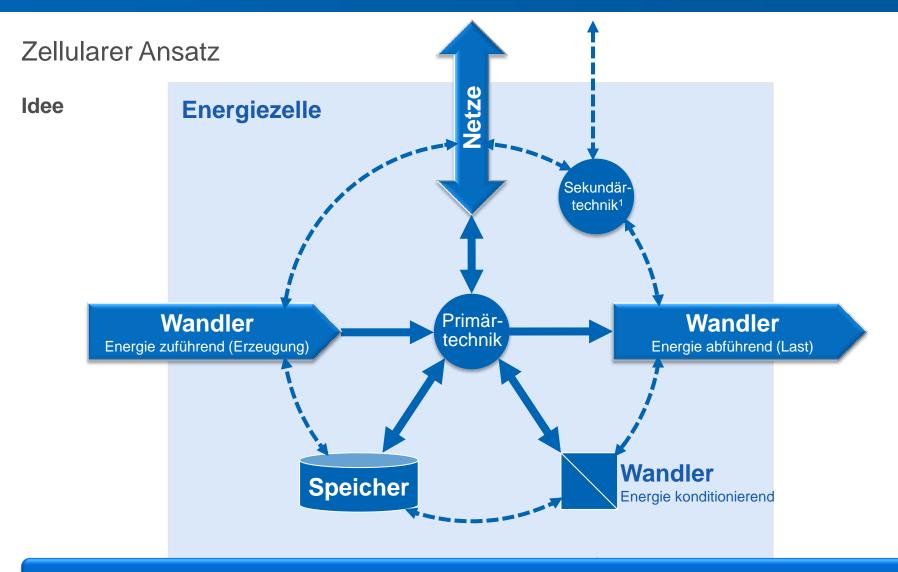
- Führen Wandlung von einer in eine andere Energieform im System durch
 - · Bezugs- bzw. Zielenergie: Elektrizität, Gas
- ⇒ Beispiele: Elektrolyseure, Brennstoffzellen, Transformatoren

Energie abführende Wandler (Lasten)

- Entnehmen dem System Energie
 - Bezugsenergie: Elektrizität, Gas
 - Zielenergie: Nutzenergie z.B. Licht, mechanische Energie, Wärme, Kälte
- ⇒ Beispiel: Wärmepumpen, Motoren

Energie-Speicher

- Vorhaltung von Energie für Zeiten geringer regenerativer Erzeugung
 - · Bezugs- bzw. Zielenergie: Elektrizität, Gas
- ⇒ Beispiele: Batterien, Pumpspeicherkraftwerke, Gasspeicher



Technologiesteckbriefe

Beispiele

Klasse	Energie zuführende Wandler	Energie konditionierende Wandler	Energie-Speicher
Тур	Photovoltaik-Anlage	Power to Gas: Elektrolyseur	Lithium-Ionen-Batterie
	Mono-/ polykristallines Silizium Dünnschichtzellen 		Lithium-Eisenphosphat Lithium-Titanat
Bezugsenergie	Sonnenlicht	Elektrizität	Elektrizität
Zielenergie	Elektrizität	Wasserstoff H2	Elektrizität
Wirkungsgrad	5% – 20%	75%	Laden/Entladen: 97%, Umrichter: 99%
	Weiterentwicklung: 40%	Ziel: >80%	Gesamt: 92%
Leistungsklasse (bei Speicher auch Energie)	100 W – MW	kW – MW	0,02 kW – 2 MW
			0,01 kWh – 1 MWh (beliebig skalierbar)
Flexibilität des Anschlusses	ele: Umrichter	ele: gut Gas: H2-Anteil (lokal begrenzt)	AC, DC, U, f (abhängig vom Umrichter)

Ziel: Ausgleich von Erzeugung und Last auf der niedrigsten möglichen Ebene

Zellularer Ansatz ... aus Zellen gebildet

Zelle (Biologie) ... kleinste lebende Einheit in einem pflanzlichen oder tierischen Lebewesen Energiezelle ... Ausgleich Erzeugung und Last auf der niedrigsten möglichen Ebene

Dezentralisierung

- Energieausgleich auf niedrigster Ebene
- ? Was ist die niedrigste Ebene

Intelligente Systeme

- Steuerung auf niedrigster Ebene
- ? Wie/was wird gesteuert/optimiert?

Vernetzung

- Energie und Information
- ? Energieträger, AC|DC, CH₄ | H₂, Spannungs-|Druckebene
- ? Datenaustausch und Sicherheit

Gesamtsystem

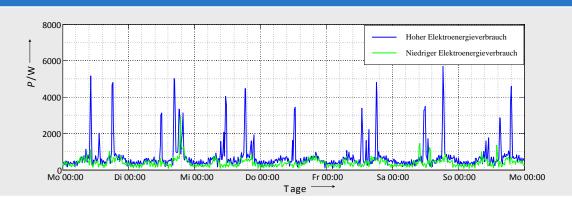
- ? Verantwortung
- ? Versorgungssicherheit
- ? Marktdesign

Zellularer Ansatz

Übersicht Energiezellen

Haushalt

- Typen von Energiezellen
 - Einfamilienhäuser
 - Reihenhäuser
 - Mehrfamilienhäuser
 - Blockbebauung
 - Hochhäuser

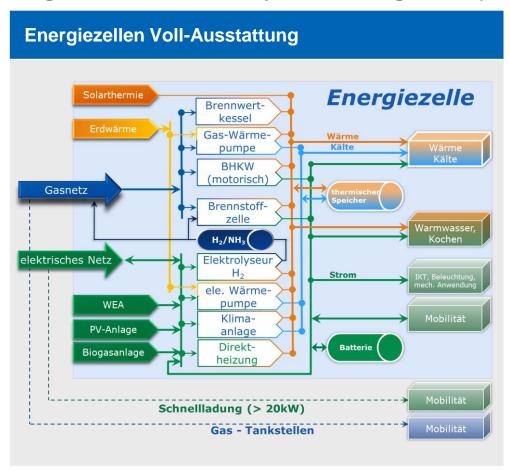

Gewerbe-Handel-Dienstleistungen

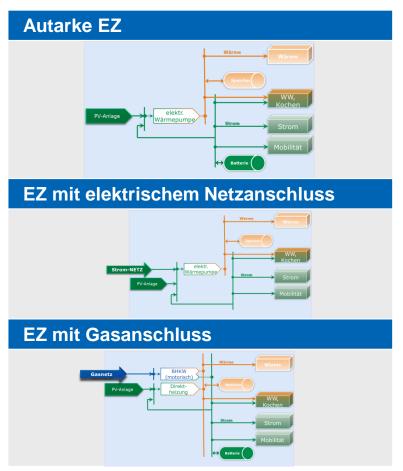
- Typen von Energiezellen
 - Gewerbeunternehmen
 - Handel (z.B. Supermarkt)

Industrie

- Typen von Energiezellen
 - kleine Industriebetrieb
 - Industriegebiet
 - Industriepark

Energetische Simulation für ein Jahr


Bilanzielle Betrachtungen


- sehr individuelle Anforderungen verschiedener Industrien an Energie
- keine allgemeingültigen Aussagen möglich
- umfangreiches Portfolio an einsetzbaren Technologien

Zellularer Ansatz

Vorgehensweise am Beispiel der Energiezelle (EZ) Haushalt

Zellularer Ansatz

Ergebnisse

Haushalt

- Autarke EZ
- Autarkie nur bei Einfamilienhäusern und Reihenhäusern möglich
- Reduzierte Versorgungssicherheit bei keinem Netzanschluss
- EZ mit elektr. Netzanschluss
- Erhöhung der Anforderungen durch Elektromobilität,
 Wärmepumpen, EE-Anlagen
- netzdienliches Lastmanagement kann Netze entlasten
- EZ mit Gasnetzanschluss
- Rückspeisefähigkeit
- · flexible Gaszusammensetzung

Gewerbe-Handel-Dienstleistungen

- Autarke EZ
- · Autarkie kaum möglich
- EZ mit elektr. Netzanschluss
- Erhöhung der Anforderungen durch Elektromobilität,
 Wärmepumpen, EE-Anlagen
- EZ mit Gasnetzanschluss
- Rückspeisefähigkeit
- flexible Gaszusammensetzung

Industrie

- Autarke EZ
- Autarkie nicht möglich
- EZ mit Netzanschlüssen
- Verfügen über mehrere Netz-Anschlüsse
- benötigen immer eine externe Energiezufuhr

Ergebnisse zeigen Erfordernisse für überregionalen Energieausgleich

Energetische Betrachtungen

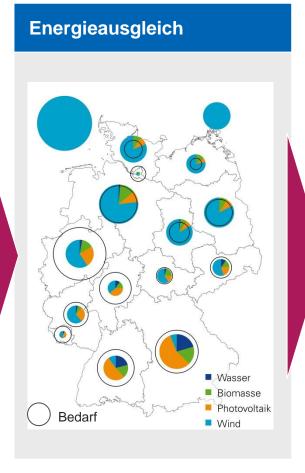
Annahmen für Verbrauch: Endenergiebedarf nach Anwendungsbereichen

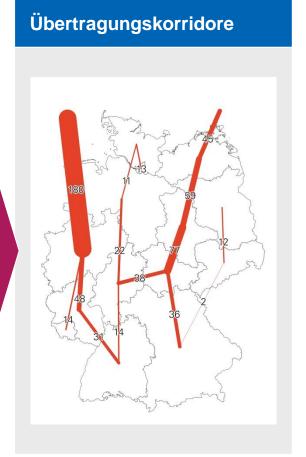
Anwendung	<i>E</i> ₂₀₁₃ in TWh/a	Reduzierung	E _{An} in TWh/a
mechanische Energie	924	-40%	554
Raumwärme	627	-80%	125
sonstige Prozesswärme	550	-25%	413
Warmwasser	124	-25%	93
sonstige Prozesskälte	45		45
Beleuchtung	89	-50%	45
IKT	61		61
Klimakälte	9		9
Summe Endenergie	2.420		1.335

Ziel ist es 600 TWh/a bis 700 TWh/a der Endenergie durch elektrische Energie aus erneuerbaren Energieträgern bereitzustellen!

Energetische Betrachtungen

Annahmen für Erzeugung: Installierte Leistung, Volllaststunden und Ertragspotenziale


Erneuerbare Energien	P _{inst An} in GW	t _{voll} in h/a	E _{An} in TWh/a
Offshore WEA	1050	4.500	45225
Onshore WEA	150250	1.500	225375
Photovoltaik-Anlage	100200	1.000	100200
Biomassekraftwerke	10	6.000	60
Wasserkraftwerke	6	5.000	30
Summe EE-Anlagen	276516		460890


Die notwendige zu installierende Leistung entspricht etwa dem **Drei- bis Sechsfachen** der heutigen Spitzenlast von rd. 80GW!

Methodik

Verbindungskorridore

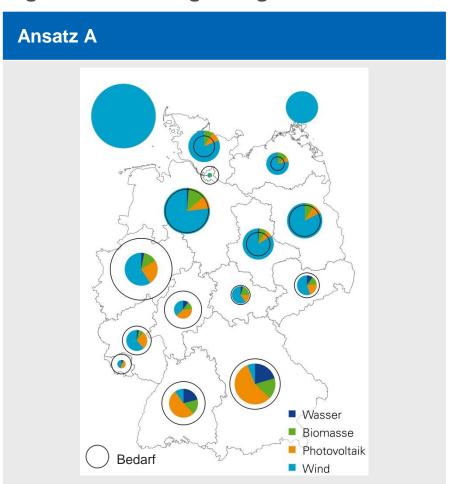
Annahmen

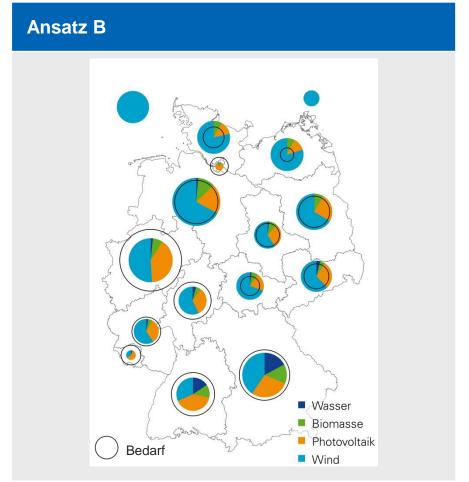
Allgemeine Annahmen

- Betrachtungszeitraum: 1 Jahr es wird nur die Energie bilanziert
- Betrachtungsbereich: Deutschland aufgeteilt in 16 Regionen
- 700 TWh/a elektrische Energie aus erneuerbaren Energieträgern
- Keine Aussagen zu Energieformen oder Energieübertragungssystemen bzw. Leistungsanforderungen

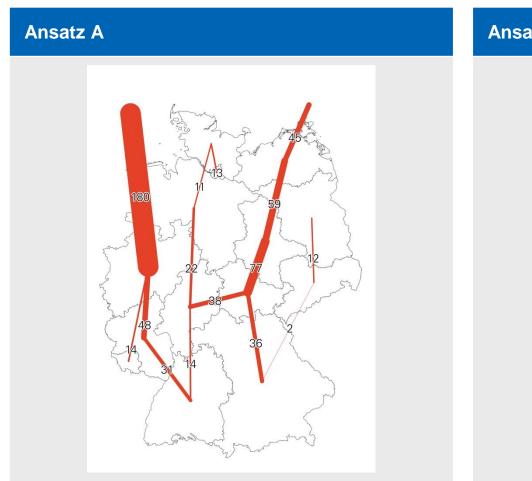
Ansatz A

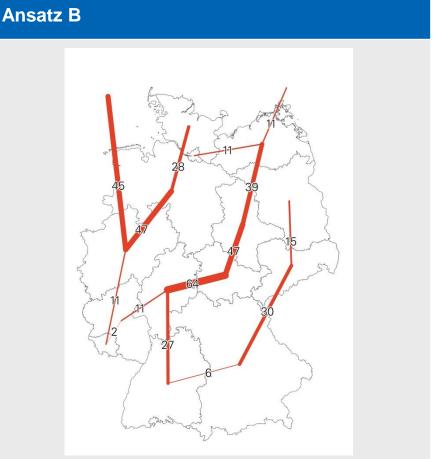
- Weiterschreibung des EE-Zubaus an PV-Anlagen und Onshore WEA
- Skalierung von PV und Onshore WEA anhand der Verteilung der Anlagen in 2011
- Massiver Zubau an Offshore WEA (225 TWh/a)


Nordsee: 40 GWOstsee: 10 GW


Ansatz B

- Verbrauchernaher EE-Zubau an PV-Anlagen und Onshore WEA
- Zubau von PV-Anlagen und Onshore WEA anhand der potenziell nutzbaren Flächen
- Moderater Zubau an Offshore WEA (56,25 TWh/a)
 - Nordsee: 10 GW
 - Ostsee: 2,5 GW


Ergebnisse – Energieausgleich



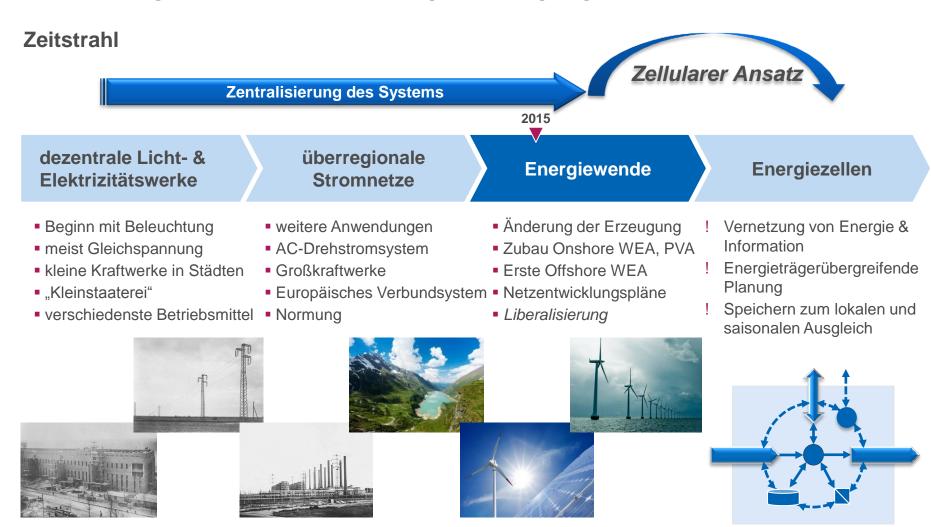
Ergebnisse – Übertragungskorridore (in TWh/a)

Zusammenfassung

Schlussfolgerungen – Der Zellulare Ansatz ...

- Vision für eine nachhaltige Entwicklung der Energieversorgung
- Technische Innovation und Motor für eine elektrische Energieversorgung aus erneuerbaren Energieträgern
- Förderung der Konvergenz zwischen Energieträgern
- Basis für eine nachhaltige Akzeptanz der Energiewende
- Motor für wirtschaftliches Wachstum und neue Marktmodelle
- Ermöglicht die Reduzierung der Energieübertragung

Handlungsempfehlungen


Zusammenfassung

Handlungsempfehlungen

- 1. Entwicklungspläne für zukünftige Energienetze in allen Ebenen müssen sämtliche Energiearten wie Strom, Gas, Wärme etc. berücksichtigen.
- 2. Die Entwicklung von Speichertechnologien in einem großen Energiespektrum muss weiter unterstützt werden, um die Integration erneuerbarer Energien in das Energiesystem voranzubringen.
- 3. Die Entwicklung von Technologien zur effizienten Wandlung muss gefördert werden, um die Vorteile verschiedener Energieformen zu nutzen.
- 4. Weitere Untersuchungen sind erforderlich, um bei einer Umsetzung des Zellularen Ansatzes inklusive der Entscheidungsfreiheiten auf Zellebene Fragen der Verantwortung für Planung und Betrieb des Gesamtsystems zu klären.
- 5. Vorgeschlagen werden Felderprobungen zur Machbarkeit des Zellularen Ansatzes.

Entwicklung der elektrischen Energieversorgung

Fotos: vlnr. 1 bis 3: SLUB Dresden/Deutsche Fotothek, Franz Stoedtner / 4 bis 8 @ Fotolia.com 4: Digitalpress 5: Franz Metelec 6: Yauhen Suslo

Vielen Dank für Ihre Aufmerksamkeit

VDE – Netzwerk Zukunft

Ihr Ansprechpartner:

Energietechnische Gesellschaft

Phone: +49 69 6308 346

etg@vde.com